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The local electronic states in long polyene chains are considered analytically in the Htickel 
approximation with and without taking account of bond alternation. The following types of chain 
defects which might be responsible for an appearance of local states are discussed: change of the 
Coulomb integral of one atom, identical change of the Coulomb integrals of two atoms, strengthening 
or weakening of one bond, simultaneous change of the resonance and Coulomb integrals of the end bond 
or of the end atom. The conditions for removing the local states from the allowed bands depending 
on the positions of the defects in the chain are given. 

Die lokalisierten.Elektronenzust~inde in langen Polyenketten werden im Rahmen der Htickel- 
schen Theorie ohne und mit Beriicksichtigung der Bindungsalternierung auf analytischem Wege be- 
handelt. Folgende M6glichkeiten yon Defekten in der Kette, die zu lokalisierten Zust~inden fiihren k6n- 
nen, werden in Betracht gezogen. ,~nderungen des Coulombintegrals eines Atoms, gleiche ~mderung der 
Coulombintegrale zweier Atome, Vorhandensein einer schw~icheren oder st~irkeren Bindung, gleich- 
zeitige Anderung von Resonanz- und Coulombintegral yon Bindung bzw. Atom am Kettenende. 
Schliel31ich werden die Bedingungen, unter denen sich die lokalisierten Zustiinde yon den m6glichen 
Bgndern entfernen, in Abh~ingigkeit yon der Lage der Defekte angegeben. 

Les 6tats 61ectroniques locaux des 1ongues chaines poly6niques sont 6tudi6s analytiquement dans 
l'approximation de Htickel, avec et sans alternance des doubles liaisons. On discute des types de 
d6fauts dans la chaine susceptibles d'etre responsables de l'apparition d'+tats locaux: modification de 
l'integrale coulombienne sur un atome, variation identique des int6grales de Coulomb sur deux 
atomes, renforcement ou affaiblissement d'une liaison, changement simultan6 des int6grales de 
r6sonance et coulombiennes sur la liaison et l'atome terminaux. On donne les conditions pour 6carter 
les 6tats locaux des bandes permises selon les positions des d~fauts dans la chaine. 

Introduction 

I t  is wel l  k n o w n  tha t  the  ene rgy  s p e c t r u m  of  n - e l ec t rons  in the  l o n g  p o l y e n e  

cha ins  has  t w o  b a n d s  for  a l l o w e d  s ta tes  - v a l e n c e  a n d  c o n d u c t i o n  b a n d s  s e p a r a t e d  

by  the  f o r b i d d e n  z o n e  o f  w i d t h  A E  (see e.g. [1]).  A c c o r d i n g  to  Pe ie r l s '  t h e o r e m  

on  n o n s t a b i l i t y  o f  a o n e - d i m e n s i o n a l  m e t a l  w i th  respec t  to  n u c l e a r  d i s p l a c e m e n t  

[2],  the  v a l u e  A E  m u s t  be  d i f fe ren t  f r o m  zero .  I t  was  r ecen t ly  s h o w n  [ 3 - 7 ]  tha t  

the  e l e c t ron i c  i n t e r a c t i o n  p lays  an  i m p o r t a n t  ro le  in this  effect. 

I t  is r e a s o n a b l e  to  ask  the  f o l l o w i n g  q u e s t i o n :  h o w  w o u l d  the  ene rgy  p i c tu re  
c h a n g e  wi th  the  i n t r o d u c t i o n  o f  defects  i n to  the  p o l y e n e  cha in?  T h e  defects  m a y  

a p p e a r  to be  due  to  the  h e t e r o g e n e o u s  a t o m s  in the  c a r b o n  chain ,  to the  subs t i tuen t s  
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of the hydrogen atoms, to the space distortion, etc. In all quantum-mechanical 
models based on the n-electron approximation which take account of the inter- 
action of a limited number of the nearest neighbours 1 the appearance of the defects 
is described by the change of some parameters in the effective n-electron Hamilto- 
nian. For a long chain this change might be considered as a local perturbation. 
In particular, the following problem is of interest. How much should the parameters 
be changed in order to obtain the local states? These are the electronic states 
located outside the allowed bands in the forbidden zone, above and below the 
allowed bands. 

A general method for solving problems of this type has been worked out by 
Lifshits [10] in application to vibrations in defective crystals and then, indepen- 
dently, by Koster and Slater [11] in a study of the impurity levels in crystals. 
The method gives a possibility of getting expressions in closed form for the 
energy and wave functions of the local states through the property of unper- 
turbed systems and has at least three important aspects. 1) It permits a study 
of the local states without determination of the band state properties. 
2) One must solve the system of equations which has an order not higher than the 
number of perturbed atoms. 3) In some cases the method opens up the possibility 
of finding exact solutions. In quantum-chemical applications the method was 
succesfully used by Kouteck~ in his work on the theory of chemisorbtion [12]. 

In the present communication this method is applied to the study of the local 
states in long polyene chains. Wishing to obtain mainly qualitative results in 
terms of simple analytical formulae we restrict ourselves to the Hfickel approx- 
imation taking into account bond alternation. We shall also consider chains with 
all bond lengths equal, which is not applicable to polyenes, but may be useful in 
some other situations, i.e., removing the local states from an allowed band in the 
case were the forbidden zone is broad, surface defects in simple cubic crystals, etc. 
Detailed derivations of some results presented here are given in [13-15]. 

General Relations 

If one is looking for the wave function of the local state as an expansion over 
AO's, Zn, then we have the following system of equations for the expansion 
coefficients U.: 

~ H . . , U . , - E U . = - ~ V . . , U . . ,  (1) 
n I t~  p 

where H.., and V.., are matrix elements of the Hamiltonian of the unperturbed 
problem and of the perturbation in the AO's representation, respectively. 
Following the procedure developed in [16] for the study of the local vibrations in 
crystals let us introduce the Green function of the Eq. (1) 

gmn(E) : E (p*(m) (.Pi(n) (2) 
i E - E l  ' 

where E i and q~i(m) are the solutions of the unperturbed problem. Considering 
the right-hand side of (1) as a nonhomogenity one concludes that the coefficients 

1 For the justification of the latter approximation see e.g. [8, 9]. 
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U, are the solutions of the following system of equations" 

= - Y, g p(E) v,s us. (3) 
p , s  

It is obvious that the sum of the fight-hand side of (3) contains U s only in the 
case where atom s is perturbed. Therefore, if one substitutes I in the left-hand side 
of (3) by the numbers of the perturbed atoms, one obtains a system of linear 
homogeneous equations, the order of which is equal to the rank of the perturbation 
matrix, whereas the order of the initial system (1) was equal to the number of 
atoms in the chain. The condition of solvability of the new system gives us an 
equation for finding the energy of the local states. Thus, our first step is to calcu- 
late the Green functions (2) which we obtain for a long polyene chain with and 
without bond alternation. 

As it is well known, the wave functions ~Pk and energies E k of the states of the 
unperturbed chains without bond alternation are (see e.g. [17]): 

~k = Zn sinkn, E k = E o + 2/3 cosk, (4) 

where N is the number of atoms in the chain, fl is the resonance bond integral, and 
k = rcs/(N + 1) (s = 1, 2, ..., N). For the corresponding Green function (2) one has 

2 sin kn. sin km 
g~ N + 1 ~ E--~o ~ 2 - ~ s k  " (5') 

Changing the summation in (5') to integration, which for the long chain produces 
an error of the order ~ 1/N, and calculating the corresponding integral we have 

sht~xe -m• 
gO,dE ) - [ ( -  1)"-" Q(E) - Q( -  E)] , (5) 

flsh~r 

where a step-function 

1, if E > 0 ,  
Q(E)= 0, if E < 0  has been used. 

Here we introduced a change in notation 

E - E o =  _+2/3 ch~ 

and without a loss in generality assumed that m > n. 
Let us consider the polyene chain with 2N atoms and alternating bonds 

described by the resonance integrals/31 and/3 2 and assume that [/3d > 1/321. Then 
the wave functions Ip~ ~), ~p~2) and corresponding energies E 1 (k). E 2 (k) are 

1 /3~sinkn +/32 s ink(n-  1).~ 
Z2"s inkn-z2"-*  V~--/3~-2fi-~22c~ J '  (6') 

. = 1  

El(k ) = Eo_ 1~212 +/32 + 2/31/3 2 cosk, 

1 i [  /31sinkn+/32sink(n-1) 1 
~p~z)_ V ~ . = 1  Z2"s inkn+x2"- '  ]/~+/3~+2/3,/32cosk ' 

(6") 
E (k) = Eo + V/3  + 2/31/32 cosk 

1" 
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The values ofk are determined as solutions of the following transcedental equation 

fl~-sink(N 1) = 0 .  sin kN  + + (7) 

The functions *p~k 1) and their energies E~(k) describe the states of the lower filled 
(valence) band, and ~p(k 2) and E2 (k) the upper empty (conduction) band. Both bands 
have a width 21fizl and are separated by the forbidden zone 

AE = 2 Ifil - fi2[. 

Inserting the corresponding coefficients Cpk(m ) from (6') and (6") into (2), 
changing the summation over k to integration, and summing up over both allowed 
bands, one obtains the following expressions for those Green functions which 
will be used later: 

g2rn,zn(E ) = (__ 1)n_ m E' shmxe -z" 
f i l  fi2 s h  Z ' 

g2m- l ,2n(E)  = ( - -  1) n - m + l  J i l l  shmx - f i e  sh(m - l ) ~ ]  

g2m-- 1,2m -1  (E) - 

e -  zn 

fitfi2 shx ' 
fi2 -- fil e - x  

g2"+l'2"(E) = 2filfie sh• ' 

E' [ e-~2m-l,z t 
2fi l f i2  shz 1 E,  2 (fi2 ex/2 - fil e - z / a )  , 

(8a) 

(8b) 

(8c) 

(8d) 

where E' = E - Eo , 

E' = +_ l//fi~ + fi2 _ 2fixfi 2 chz .  

We shall mainly consider the local states in the forbidden zone for this case is the 
physically most interesting. Therefore, we have written down only Green functions 
for tE'[ < tfi, -/321. 

It is obvious that any real defect is connected with a simultaneous change of 
some Coulomb and resonance integrals of the chain. However, wishing to obtain 
an analytical description of the local states we shall consider certain models, 
namely: change of one Coulomb integral (single substitution), simultaneous 
identical change of two Coulomb integrals (double substitution), and change of 
one resonance integral (perturbed bond). We may hope that a qualitative descrip- 
tion of the real situation can be realized by the combination of the present results. 

Single Substitution 

Let the perturbation be described by the change As of the Coulomb integral 
of an atom n 

Vps = A s  6p, 6~,. 

Then Eq. (3) becomes 
u .  = - A s  g . . (E)  u . ,  

the condition of solvability of which 

1 + A~g..(E) = 0 (9) 

determines the energies of the local states. 
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We first consider the chain without bond alternation. Substituting the function 
g~ from (5) into (9), one obtains 

1 - -  e - 2 n ~  
1 + Act [Q(E) - Q ( - E ) ]  = 0.  (10) 

2/3 sh 

Eq. (10) can be solved analytically for two limiting cases: 1) when n ~ o o  
that is the substitution is made far away from the edge of the chain, and 2) when 
n = 1 (surface state). When n-~ oe, neglecting in Eq. (10) the term ~ e  -"x and 
solving the corresponding equation, one obtains the known expression for the 
energy of the state localized in the middle of the chain [11] 

E = E o + sign(Act) ]f(Aa)2) 2 + 4fl 2 . (t 1) 

Putting n = 1 into (10) one also obtains the known expression for the energy 
of the surface state 

E = E o + sign(fl/AcQ (Aa + fl2/~ct). (12) 

It is easy to show that the state with an energy given by (12) exists only when 

IA~/fll > 1, 

whereas in the case of the removal of the local level in the middle of the chain, 
as it follows from (11), the perturbation A~ might be infinitely small. 

For  n r 1 and n ~ c~ Eq. (10) can be solved only numerically. Nevertheless, 
the asymptotic result can be found for the exact value of the minimal perturbation 
needed for removing the local state as a function of the value n. It follows from (5) 
that the minimal distance of the local level from the band corresponds to x ~ 0 
(or IE-Eol~12fll) .  Substituting u-+0 into (10) one concludes that perturbation 
of the n-th atom leads to the appearance of the local level only when 

1 
IZX /pl > - - .  (13) 

t/ 

Now we shall consider the chain with alternating bonds. It follows from (8 a) 
and (Sd) that the results should be different for even and odd perturbed atoms. 
However, for n--* oo these differences are exponentially small and equations of the 
type (9) should be the same for the states localized in the middle of the chain. 
Substituting n ~ o o  into (8a) and (8d) and putting a corresponding expression 
into (9), one obtains an equation for the energy of the local states in the forbidden 
zone. An analogous equation could be obtained for the levels located above and 
below both allowed bands. We have not written down the Green functions 
which correspond to IE1>1/~1+/~21. A solution of these equations gives the 
energy of the local states E~o for a single substitution in the middle of the chain, 
namely: 

= _+ sign (Ae) + + -+ (ZXct) 2 + - - 4  + 4B # J .(141 

The positive sign here corresponds to the level located above or below both 
allowed bands, and the negative sign to the level in the forbidden zone. It follows 
from (14) that even an infinitely small perturbation of the distant atom leads to 
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two local levels. One of them is located outside of the bands, and the other in the 
forbidden zone. When Ac~ > 0, the level in the forbidden zone is filled, and the other 
is empty. When Ae < 0, the situation is reserved. If As  is small, the energy of both 
levels depends quadratically upon the perturbation. When I A~I>I/~ll and 
]As[ > [flg[, the energy of the out-of-band level depends linearly on Ae; whereas, 
the energy of the other level is approximately proportional to 1/As. The latter 
means that one must apply an infinitely large perturbation in order for the local 
level to reach the middle of the forbidden zone. Thus, the level removed from the 
edge of the valence band cannot be transfered to the district E > 0 by any single 
substitution, and vice versa. 

Now we shall consider the dependence of the minimal value of the perturbation 
needed for an appearance of the local level, on the number of the perturbed atom. 
Substituting (8a) for the even atoms into (9), one obtains 

E' s h r o v e  -m~ 
1 + Aa = 0, (15) 

/h/~2 sh~ 

where 2m-- 1 is the number of the perturbed atom. Approaching E--+___ ]ill -fig] 
in Eq. (15), one concludes that the minimal perturbation by its absolute value 
needed for removing the level in the forbidden zone is 

A~i),,(/) = - sign(E) 2fllf12 1 
/~,-f12 T '  (16) 

and for the out-of-band levels 

A ~ ( / )  = sign(E) 2fll/72 1 
fll+fl2 l "  (17) 

Thus, if a perturbation is such that [As[ > ]2/~lf12/(fl 1 -flz)l/l, then this leads to 
an appearance of two local states. When 

1 2filf12 2filf12 1 
T fll--~fl2 < IAsl < f l l - f i2  7 '  

only one out-of-band level appears. If 

2fllj~2 1 

the local states do not appear at all. 
Following the same procedure for the case when the perturbation is localized on 

an odd atom with the number 1 -  2m - 1, one obtains the following condition for 
removing the local level into the forbidden zone 

(i) 9-~" ~ I fll + fl2 - i A~min(/) = -s ign(E)  --i'-lr zfll--f12 _]_ ~ , (18) 

and for the out-of-bond level 

As~i)n(/) = sign(E) /71 +/Tz l /71 -/Tz -1 (19) 
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Comparing (18) and (19) with (16) and (17) one sees that for large values of l 
the criteria for the appearance of the local states on even and on odd atoms 
coincide. It is also seen from (18) and (19) that the appearance conditions for the 
surface level (l = 1) outside the bands and in the forbidden zone are the same, 
namely: 

IA~?.(1)I = IAc~r (20) 

that is the surface states always appear in pairs. 
Let us now suppose that the polyene chain begins with the weak bond with 

Ifil] < ]flz]. This may happen, e.g., if an unpaired electron is located at the edge of 
the chain [18, 19]. We shall see how the results will change. In this case besides 
volume solutions (6') and (6") of an unperturbed problem (the number of solutions 
in the even chain is equal to 2 N - 2 )  there are two more surface solutions 
localized at the edges of the chain. For  a long chain when interaction of both sur- 
face states could be neglected, their energy is equal to zero, and the wave function 
of the state localized, say at the left edge of the chain, is 

l/N- N 
I/)(3) ~- E @3(/)){l ' @3(/) = 82 (fll//~2) 1-1 , if 1 = 2m + 1, 

l 0 i f  1 = 2m. 

and Eq. (9) leads to the following equation for the energy of the local states 

2 " A ~ - E  ~ I@,(k,/)l 2 Ae 
7Z ,d E2 _ E2(k) dk + T 1@3(I)12 = 1, (21) 

0 
where l is the number of the perturbed atom, and @l(k, l) are the coefficients of 
AO's in (6'). For  even values o f / :  @3 (l) = 0. This means that the formulae (15)-(17) 
remain valid. For  l = 2m + 1 the condition for removing the local level outside 
of the bands coincides with (19). However, for the existence of the level near the 
edge of the forbidden zone it is now necessary to have 

Ae = sign(E) ( f12 --ill l fll -}-f12 ~-1 (22) 
\ 281fi= 2flail2 / 

instead of (18). 

Eq. (22) gives an appearance condition of the local state only for 

/~a + & 
l > - -  

In the opposite case it gives a disappearance condition of the local state genetically 
linked to the surface state of the unperturbed chain. To illustrate the situation let 
us consider an exact solution of (21) for I=  1 (perturbed surface level). The energy 
of the level in the forbidden zone 

where 

E = sign (A@ Vfl 2 +/32 - 2fll f12 ch z ,  (23') 

~ = l n { ~ [ f l  I fl, fl2-] q- V~[fl l fl, f 1 2 - 1 2 - k ~ 2 2  j .  (23") 
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It is seen from (23) than when Act = 0, then E = 0 (level in the center of the forbidden 
zone). With an increase of IActl the level is moving to the edge of one of the allowed 
bands, and if [Actl~[flzl, then IEI--'l132-,8~l which is in agreement with the 
criteria (22). Further increase of 1Act] > It21 leads to the infusion of the local level 
into the allowed band. It follows from (19), when [Act[ _-> [f121, the surface level 
appears with an energy [E[--_ ]fll + f12[, which means that it is located above or 
below both allowed bands. In other words for any value of ]Actl in the chain with 
a broken strong edge-bond there may be one and only one surface state. As it is 
seen from (22), for 

1< /~2 + / ~  
P2 -/~, 

an increase of I requires an increase of [Act[ in order to move the level to the edges 
of the forbidden zone. It is obviously connected with the exponential decrease 
of the wave function of the surface state when the distance from the chain edge is 
increasing. In other words it is difficult to move the level by substitution at the 
point where the electron density is small. Comparatively larger values of [Act I 
needed for an appearance of a new (besides the surface level) local level for the 
smallest I satisfied by the inequality 

l>  /~1 + / ~  

is in agreement with the known fact [12] of the difficulty of producing two local 
states which are situated in the immediate neighborhood of one another. The 
extent of the chain region in which this effect can be observed is greater if the width 
of the forbidden zone is smaller. 

Double Substitution 

As the simplest example of the mutual influence of two identical defects we shall 
consider the case where a perturbation consists of an identical change Act of the 
Coulomb integrals of the chain atoms m and n. Then 

Vps : Ac t (  (~ mpC~ ms --]- (~ pnC~ sn) 
and (3) is reduced to 

U~ + Act [gtm(E) U~ + g~.(E) U.] = O. (24) 

Subst i tu t ing consequent ly  I = m and I = n in to  (24), one obtains a system of  two 
homogeneous linear equations, the solvability condition of which 

[1 + Act 0m.(E)] E1 + zxct g..(E)3 - (Act)20~.(E) = 0 (25) 

gives an equation for the determination of the local level energies. 
Let us first consider the chain without bond alternation. Substituting the 

necessary Green functions from (5) into (25), one obtains 

1+  ~ e  -m~ shmx 1+  - - e  -"~ 
sh-----~ fl sh z J fl sh ~ e-  m~ . 

(26) 
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When I n -  m[ increases, the right-hand side of (26) decreases approximately as 
exp [ - ( m - n ) z ] .  So for a large distance between defects it might be assumed 
equal to zero. Then Eq. (26) is transformed to Eq. (10) for the energy of the local 
state in the case of single substitution, and for m, n > 1 there are two degenerate 
local states with an energy 

E = E o + sign (Ac~) V4f l  2 + ( A C t )  2 . 

If m, n > 1, but Ira-nl ~ 1, then neglecting terms like ~ exp(-mz) ,  exp(-nz) ,  
one obtains from (26) 

1 ___ e_lm_,l~ 
shz - 1. (27) 

The solution of (27) with the positive sign exists for any value of tA~/[3[ and z-> 0, 
that is an appearance of the local level corresponds to [A~/fl] ~ 0. If one considers 
the negative sign in (27), then a solution does not always exist. An appearance of 
a solution (z ~ 0) which corresponds to the second local level is possible only when 
IA~/fl[ > 1/(m - n). Thus, if in the case of infinitely distant impurities located in the 
middle of a chain, there are always two (degenerate) local states, but when defects 
approaching one other, degeneracy is removed, and if the perturbation is not large 
enough, i.e., 

mutual repulsion of the two split levels leads to the situation where one of them 
flows back into the band. There are two local states only when 

> - -  ( 2 8 )  g?/--n 

If condition (28) is fulfilled and the splitting of two local states is small, then 
Eq. (27) can be solved by the iteration method. For the zero approximation one 
can take the solution when [m-  n [ ~ ,  namely: 

chzo = V 1  ( /~0{ "~ 2 
+ \ 2 f i J  " 

The corresponding value of ~o is substituted into (27), then zl is found, etc. After 
the first iteration the solution is as folldws" 

1 - - -  sign(Ae) E = E ~ 1 7 6  1--" 2 4f12+(A~) 2 ~ -  + 2fl J ~ (29; 

To analyse the appearance conditions of the local states when both perturbed 
atoms are located not far from the chain edge, we should return to (26). Letting 
~--+0, one obtains the following appearance conditions for one 

~ >  m + n -  ~/(m + n) 2 - 4 n ( m -  n) 
= 2n(m - n) (30') 
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and for two local levels 

~ _  m + n + l /  (m + n) z - 4n(m - n) 
> 2n(m - n) (30") 

It is easy to see that the right-hand side of(30') is smaller than 1/m but that of (30") 
is larger than 1In. Thus, the perturbation needed for an appearance of one local 
level in the case of two interacting impurities is smaller, but for the appearance 
of two levels is larger than the perturbation needed for an appearance of one local 
level on any of the two (n and m) single impurities. 

Considering the chain with bond alternation we restrict ourselves to the 
physically interesting case of local states in the forbidden zone. We shall consider 
separately the interaction of even perturbed atoms and the mutual interaction 
of even and odd perturbed atoms. The interaction of odd atoms is qualitatively 
the same as for even atoms and will not be considered here. 

Let us first consider the interaction of two even atoms. Substituting (8a) into 
(25) one obtains an equation for the determination of local state energies, namely: 

AcrE' shrn~e -m~. 1 + - -  = 

l~ 8182 sh~ 8-182 sh~ ~ s ~  ).(31) 

Analysis of the appearance conditions having one or two solutions of (31) is 
analogous to the analysis of Eqs. (26) and (27). In fact, this analysis was based on the 
consideration of these equations in the limiting case where e ~ 0  which in the 
present case corresponds to an approach up to the edges of the allowed bands, 
that is 1E1-+181-821. Comparing asymptotic expressions for (26) and (27) we 
see that they become the same if 1/8 is changed to (81-82)/(8182).  Thus, by 
analogy with (28)-(30)we have the following conclusions. The value of the pertur- 
bation [Ae[ needed for an appearance of one local state in the forbidden zone is 

IA~I I > /71/72 m + n - l / ( m + n ) 2 - 4 n ( m - n )  
= 81 - 82 2 n ( m -  n) ' (32) 

and for a perturbation which leads to the two local states 

m + n + ]/(m + n) 2 - 4n(m - n) (33) 
[A~2i > 2 n ( m -  n) 

In the case when m, n ~> 1, but I m -  nl ~ 1, (32) and (33) give 

8182 1 IAcql>0, IA~21 > (34) 
= = 8 1 - 8 2  m - n  

In the latter case (31) is simplified to 

A~" E' (1 ___ e -Im-"l~) = - 1 (35) 
28182 sh 

and can be solved by the iteration method if the second term of the left-hand side 
of (35) is small enough. As a zero approximation, we may take the values of E' 
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and z o for infinitely distant impurities given by (14). The solution after the first 
iteration is 

E sign(At0 ~ B z  +/3~ _~ (Ae') 2 V ~  _~ (f12 Av fl22) (A~,)2 22 = -  +4/31/32, (36) 
2 

where (A&) 2 = (Ac02 [1 T 2e-(m-")~~ 

It should be noted that perturbed atoms in the formulae (31)-(36) have numbers 
2m and 2n. 

Finally considering the interaction of two even defects we note, as is seen 
from (31), that the local level cannot be shifted to the center of the forbidden zone 
(E' = 0) by any finite perturbation Ae. 

Now we shall consider the behaviour of the local states in the case of the inter- 
action of even and odd defects. Substituting (8c)-(8d) into (25), one obtains the 
following equation for the energies of the local states: 

(lq-E'/31/32 ~ -/ q-r, 2/31/32 L* E'2 ~ tP2'~ 

/~0~ ~2 [/31shm~_/32sh(m_l);~]2 e -2n~. (37) 

= keT 7) sh2  

It is seen from (37) that unlike to the interaction of even impurities, an increase of 
]A~] may shift the local level to the center of the forbidden zone and one may even 
pass through the whole forbidden zone from the bottom to the top. However, 
it may be shown that the perturbation needed for this increases exponentially 
with the increase of the distance between the impurities. Therefore, an analysis of 
(37) when z ~ 0  should be carried out with care for here we meet cases of not only 
the appearance of the local states (removing from the bands) but also disappearance 
of the local states when for large {A~I they are removed from one of the allowed 
bands, going through the whole of the forbidden zone, and flow into another band. 

It is obvious for physical reasons (see also results for single substitution), 
that when approaching the lower edge of the upper band [E'-~ - (/31 -/32)] the 
perturbation A~ < 0 corresponds to an appearance of the local level and a A~ > 0 
to an infusion of the previously existing level into the band. The situation is 
reversed when approaching the upper edge of the lower band. Substituting z--+ 0 
and E--+(/3,-/32) into (37), one obtains a quadratic equation with respect to As, 
namely: 

~--7~-2 / Era(/31 -/32) +/32] [(ill -/32) (n - m) -/323 

A~ (38) 
+ ~ [(n + m) (/31 -/32) + 1723 - 1 = 0. 

As it is seen from (38), for ]n - m] >/32/(/31 -/32) both roots are positive. This means 
that for sufficiently large A~ two local levels may be removed from the lower band. 
The values of A~ needed for removing one or two levels should satisfy the 
inequalities A~ >__ ~l and A= > ~2, where ~1 and ~2 are the larger and smaller roots 
of (38) in the absolute sense. 
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Iflm - nl < f l 2 1 ( f l l  - -  f12), then one solution of(38) is positive, and the other which 
is larger in the absolute sense is negative. The value Act > ct~ leads to an appearance 
of one local level, and any further increase in Act cannot lead to removing the second 
level. The value ct2 < Act < -ct~ corresponds to the local level which is removed 
from the lower edge of the upper band when Act = -ct i  and shifted to the upper 
edge of the lower band when Act ~ ctz. Thus, if the perturbed even and odd atoms 
are located sufficiently close to one another so that their numbers 2n and 2m - 1 
satisfy the inequality 

//2 
In - ml < //1 - / / ~ '  (39) 

then any identical perturbation of both atoms cannot lead to an appearance 
of more than one local level in the forbidden zone. In particular, as it follows from 
(39), two neighbouring perturbed atoms (n = m) linked by a stronger bond for any 
values//a and//2 can give only one local level in the forbidden zone. It may also 
be shown that there is another situation for the levels located above and below the 
edges of both bands, namely: it is always possible to find such a value IActl that 
two levels will be removed. 

Perturbed Bond 

Let the perturbation be described by changing the resonance integral between 
the atoms n and n + 1 

lips - -  A f l ( f p , , 6 , , , , + l  + 6p,,,+16,,,) �9 

Then Eq. (3) is transformed to 

U l = - A f t  [g l , , (E)  g,,+l + gt,,,+l (E) U,,]. (40) 

Following the same procedure used for the derivation of Eq. (25), one obtains 
from (40) an equation determining the energy of the local states 

[1 + Af lg . , .+ l (E)]  2 - (A f l )Eg . . (E)g .+i , .+I (E)  = 0. (41) 

It follows from (5), (8a)-(8d) that Eq. (41) has the same pattern for both signs 
of the energy. It means that the present local states always appear in pairs and that 
their energies differ only in the sign. 

We shall first consider the chain without bond alternation. Substituting the 
necessary Green functions from (5) into (41), one obtains 

If the perturbation is localized in the middle of the chain, then neglecting terms 
like exp( -n~)  in (42) and solving the corresponding equation, one obtaines 

E =  Eo +_ fl' + -~;- = f i e  x . (43) 

It follows from (43) that an appearance of a pair of local states is possible only when 
the bond is strengthened. 
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An analytical solution can also be found if the perturbed bond is located at 
the end of the chain. Substituting n = 1 into (42) and solving the corresponding 
equation, one obtains 

e~ = / ( - ~ f l - ) 2  + 2 -Aft . (44) 

It follows from (44) that the local states exist only when the end-bond is sufficiently 
strengthened, namely, when [fl'/fll > g ~. 

it should be noted that an analytical expression for the energy of the surface 
states can also be derived for a more general case when besides changing the 
resonance integral of the end-bond one also changes the Coulomb integral of the 
end-atom. In this case 

Vps =/x/~(apla~2 + 6p2asl)+/ ' ,callas2.  (45) 

Substituting (45) into (3) and following the same standard procedure as before, 
one obtains 

E_+ = E 0 _+ 2fl ch z (46) 

where e~ = +- 2fl- + V \  2fl / + 2 + . 

It follows from (46) that an appearance of the local state with an energy E_ 
located above the valence band is possible when 

/~ > 2 ,  

and for the level E§ located below the same band 

+ ~ - > 2 .  

It means that there are two local levels if 

> 2 +  

and only one if 

The Eq. (42) permits the derivation of a relationship between the minimum 
perturbation needed for the appearance of paired local states and the number n 
of the perturbed bond. Letting z ~ 0  in (42) we see that the local states appear 
only if 

____ + ---. (47) 
n 
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Now we shall turn to the local states in the forbidden zone of the alternating 
chain and shall consider two cases: perturbation of weaker and stronger bonds. 

Substituting corresponding Green functions from (8a)-(8d) into (41), the 
following equation is obtained for the local levels appearing under the pertur- 
bation of the weaker bond 

I /kfl shn~e-ng.12 __ ( / k f l ) 2E  '2 shnz - . .  

l+plp2(fl2-flle-~)Z--a-- shx [ 2fl~fl~sh2~ e 

(48) 

�9 1 E ,  2 (f12e~/2-flle-~/2)2 , 

where 2n is the number of the perturbed bond. This equation can be solved exactly 
for the limiting case n >> 1. Letting n ~ 00 in (48) and solving the corresponding equa- 
tion, one obtains the energies of the two states localized far away from the chain edge 

E '  = +_ ~/  fl~ + fl~ - 2f l l f12 chz, (49) 
where 

e ' -  
2 

31fl2 1 +  , 

zxfl - -  31 - 3 2 .  

An analysis of(49) shows that this solution exists only when [fl~[ > ]f12[. This means 
that any small strengthening of the weaker bond in the middle of the chain always 
leads to the appearance of two local states in the forbidden zone. 

Eq. (48) also permits the derivation of the dependence of the perturbation 
needed for an appearance of paired local states on the number of the perturbed 
bond�9 Letting z-~ 0 in (48), the following condition for their appearance is obtained 

V 2fl 1 # i  > 1 + (50) 
f12 l ( f l l  - f12) ' 

where I is the number of the perturbed bond. 
An analogous consideration can be carried out for the perturbation of the 

stronger bond. Using corresponding Green functions, one obtains the following 
equation for the energies of the local states 

1 -t 31/72 sh~ [31 shrnx-fl2 sh (m-  1)x] 
(51) 

1 (  Aft ) 2 = - -  e - m s  shm~ [ E  2 - e-2mx(fl2e• - -  ill) 2"] 
2 fllfl2 shg 

which can be solved exactly in two limiting cases: when m ~ 00 (change of a bond 
in the middle of the chain) and when m = 1 (surface level). In the first case setting 
m-~ 00 and solving the corresponding equation, one obtains 

E+ = +_ V f l ~  + f12 - 2f l l f12 chz,  (52) 
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where 

- - 5 - +  +i, 

~ -  ~1~2 i +  

=/31 -/31. 
An analysis of (52) shows that any small weakening of the stronger bond located 
far away from the chain edge is sufficient for an appearance of the local levels. 

Substituting m= I into (51) one obtains for the surface state 

E~u~f. = _+ ]//32 +/3~ _ 2/~t/~ 2 chz,  (53) 

where e ~ = -  2 + f l ~ 2 J "  

It is easy to see that the solution of (53) as well as the surface state exists only when 
the first bond is sufficiently relaxed, namely, when 

= /31 

From Eq. (51) the relationsip of a perturbation needed for the appearance 
of the local states on the number m of the perturbed bond can be obtained. It follows 
from (51) that the local states appear only if 

/3~-( V 2fl2 (54) 
< 1 m(/31 --/32) +/31 +/32 

The characteristic nontrivial property of polymers with conjugated bonds 
is the presence of paramagnetic centers. This was repeatedly proved experimentally 
by the ESR method [20-24]. A satisfactory explanation of the general regularities 
of this phenomena is possible in terms of the local defect centers and the charge 
transfer between macromoleeules [18, 19, 25-29]. In particular it was suggested 
[18] that an experimentally observed ESR signal in long conjugated systems may 
be connected with an appearance of a pair of defects of the type 

�9 . .  . . .  

These defects have been interpreted [18] as radicals. The energy of the unpaired 
electrons localized on the defects situated at large distance from one another is 
equal to zero (Fig. 1). 

[ ] 
- - - - - - - o -  . . . . .  - o - - - - - - - E  o 

Fig. 1. Energy pattern of electrons when defects are infinitely distant from one another 
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Pople and Walmsley [18] noted that when defects approach each other, for 
vibrations of the nuclei core, the zero degenerate level is split and both electrons 
should drop to the lower level. The following valence sheme is obtained when the 
defects approach one another as closely as possible 

This state is not a triplet state. In fact this defect may originate simply by the 
weakening of one of the double bonds so that its resonance integral becomes 
equal to f12 instead of ill. This could be obtained, e.g., by a distortion of the chain 
co-planarity. The energies of these local states thus obtained, are given by formulae 
(52) with fl' = f12. The picture of the energy levels is given in Fig. 2a. Transition 

] 
E+ ---c-- E+ 

. . . . . . . . . . . . . .  E o E o 

e) b) 

Fig. 2. Energy pattern of electrons when defects are close to each other: a ground state, b excited state 

to the lowest excited state (Fig. 2b) requires an energy E+ - E_. If one assumes that 
spontaneous (thermal) appearance of such states is possible only for the scheme 2b, 
then it is obvious that within the framework of the method used here and by 
the authors of [18] the energies of the states pictured in Fig. 1 and Fig. 2b are the 
same and are equal to the energy of the transition of one electron from the valence 
band to the conduction band. This simply means that a consideration of such defects 
without accounting for the deformation of the a-core and the electronic interaction 
is not correct. 
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